COMPUTER
APPLICATIONS

UNLIMITED.

M-ZAL™ RELEASE 2 MANUAL

by
Jeff Krantz

David Willen



iii

M-ZAL RELEASE 2

I. INTRODUCTION .cceecocccaccnscscccccnacsccoconsacscscoses 1
II. LEXCONV: LEXICAL CONVERTER PROGRAM
1) File Formats SUPPOIrted ...eeeeecececcccccncees 2
2) How tO use LEXCONV ..iveeeeccessvcasccccsccncee 3
3) The Lexical Conversion OptiOnN ..ceeeececececee. 5
III. NEW FEATURES IN TXEDIT (TEXT EDITOR PROGRAM)
1) Warm Start Option ciieeeeeeeeeneecccccccnnneee 6
2) Display Free Space Command (CLEAR ?) eveveeeeee. 6
IV. NEW FEATURES IN ASMBLR (ASSEMBLER PROGRAM)
1) Conditional Assembly (IF/ENDIF Statements) ... 7
2) Nested Conditional Assembly ....ceeececcccecosos 8
3) IF Statement Restrictions
Introduction to MacroS ..eeececeeccsccccceeees 11
Macro Definitions (MACRO Statement) ..eeeee... 12
Special Symbolic Parameters ?INDEX and ?PARM#. 15
Detecting Null Operands (! Operator) ......... 16
Macro Comment Statements (. Statements) ...... 18
Terminating Macro Definitions (ENDM Statement) 18
Macro Naming Conventions
1ll) Macro Invocations
12) Macro EXPanSionS ceieeeeececcoccececcecconoenees 20
13) Controlling Macro Listing (*MACLIST Statement) 20
14) Pre-processor VAriables (DEFL Statement) ..... 21
15) Nested and RecUrsSive MACIOS .ueeeeeceoceceess. 22
16) New Error Messages:
INVALID LABEL tesesceccsesssssecsnssssscscnces 2D
INVALID OPERAND(S) esecsscscscesssscsesssssssccss 25
UNMATCHED IF STATEMENT
MISSING ENDIF STATEMENT eeeeeocccccoccoccconens 25
UNDEFINED EXPRESSION ON IF STATEMENT cceescecs 25
INVALID MACRO NAME #seeccccrcccscssssscsesssssce 2D
INVALID MACRO DEFINITION IGNORED 1
EXTRA ENDM STATEMENT ctsecessssesscscsesesscccss 26
INVALID PARAMETER ®sccccscccesssssecnssscsccce 26
INVALID DUMMY PARAMETER teeecessscsssesscasess 26
OUT OF MEMORY DURING MACRO DEFINITION cecscncas 27

OUT OF MEMORY DURING NESTED MACRO EXPANSION .. 27
V. NEW FEATURES IN LINKER

DISPLAY Command
ZAP COMMANGA cevevecccsecacocsocnncasseeanonnaee 29
SPEED COMMANA +eseesceccceccscncnsccccoononees 20
New LINKER Error Messages:

INVALID COMMAND s veeecencesonencccccnooonenes 29
ADDRESS NOT FOUND tiveceeeonoocnoccccconnnnens 29
ZAP DATA EXCEEDS EXTENT

® e 0000090000200 00e0 lo

O WO ~JOoOH UL i
N Nt NP N N Nt

® 5900000000000 000s00e0 18

..OO..............‘.......Q. lg

®® 6000200020000 00000000 25

‘..O......O.......‘......‘..O. 28

B w N
- et N

® o0 0o 0o reesss0ae 30



M-ZAL RELEASE 2

I. INTRODUCTION

Release 2 of the M-ZAL development system contains many enhance-
ments and extensions to the original M-ZAL. The authors wish to

thank the many M-ZAL users who wrote or called with suggestions
for some of these new features.

This manual describes and explains all of the new features of
M-ZAL RELEASE 2 and is meant to be used in conjunction with the

M-ZAL SYSTEM MANUAL. The changes made by release 2 can be sum-
marized as follows:

1) A new utility program, LEXCONV, has been added to
facilitate conversion between the various
source file formats used by TRS-80 assemblers.

2) New features for the TXEDIT (text editor) program:
a) Warm Start Option.
C b) Show Free Space command (CLEAR ?).
3) New features for the ASMBLR (assembler) program:
“ a) Pseudo-ops DEFB, DEFW, and DEFS can now
be abbreviated as DB, DW, and DS.
a) Conditional Assembly.
b) Recursive Macro Language.
4) New features for the LINRER (module linker) program:
a) DISPLAY command.
b) ZAP command (module superzap capability).
c) SPEED command (set tape speed, Mod 3 only).

M-ZAL RELEASE 2 is distributed on a non-system disk for either
the TRS-80 Model I or Model III. You must therefore start out
by placing your own system disk into drive 0 and the M-ZAL disk
into drive 1. The release 2 disk contains all of the files as
defined on page 3 of the M-ZAL SYSTEM MANUAL. Only the follow-

ing files have been changed from release 1l:
TXEDIT/CMD TXEDIT/RLD ASMBLR/CMD LINKER/CMD

Only one new file has been added, it is LEXCONV/CMD and it
contains the new lexical converter program.

The rest of this manual is dedicated to explaining the new
features of each M-ZAL program. An understanding of the original
'M-ZAL system, as described in the M-ZAL SYSTEM MANUAL, is assumed.

~



II. LEXCONV: LEXICAL CONVERTER PROGRAM

There are a number of editor/assembler products on the market
now and several different source file formats are in common use.
The LEXCONV program allows you to convert disk source files from
one format to another. 1In addition, LEXCONV will optionally
check to insure that the source file contains acceptable syntax
for the M-ZAL assembler, and will make adjustments as needed.

l) File Formats Supported

LEXCONV will allow you to convert disk files between any of
the following four formats:

1) M-ZAL - The file format used by the M-ZAL
programs TXEDIT, ASMBLR, and LINKER.

2) APPARAT EDTASM - The file format used by Apparat's
extension to Radio Shack's EDTASM.
This format is also used by EDAS.

3) MACRO-80 - The file format used by Microsoft's

. MACRO-80 assembler sold by Radio

Shack.

4) UNNUMBERED ASCII - This file format is used by some

word processor programs and is also
supported by the LIST command of
most Disk Operating Systems (DOS).
It does not include line numbers

on each source line.

A detailed definition of the M-ZAL source file format will be
found in the M-ZAL SYSTEM MANUAL on page 63. A definition of
the other file formats can be found in the book "TRS-80 Disk
and Other Mysteries" by H. C. Pennington.

The M-ZAL file format is the most space efficient of those
formats that support numbered lines. This means that if you
store your source programs in this format they will take up
less disk space than if you stored them in one of the other
formats. The difference is not significant for short source

programs but can become quite substantial as your programs
grow in size.



2) How to use LEXCONV

LEXCONV is invoked from DOS READY mode by simply typing in
the command LEXCONV and hitting ENTER. This program is
self documenting and explains all of your options as it
prompts you for information.

You will be asked for a source filename. This is the name
of the disk file containing the program that you wish to
convert. You will then be asked for the source file type.
This tells LEXCONV what format the source file is in. You
must reply to this prompt with a number from 1 to 4, corres-
ponding to the four different file types described on the

preceding page (your choices are described on the screen by
LEXCONV as well).

If you discover that you have accidently given an incorrect
reply to one of the prompts, you can hit the CLEAR key. This
will cause the LEXCONV program to restart and let you correct
your error. Hitting the CLEAR key in response to the first
prompt will return you to DOS READY mode.

Once you have specified the source file to be converted, you
will be asked for the target filename. This is the name of
the file that LEXCONV will place the converted program into.
The target file can be the same as the source file because
LEXCONV reads the entire source file into memory, converts
it as needed, and then writes it back out to the target file.
This means that you can convert large files from one format
to another without having to worry about running out of disk
space (simply specify the same name for both source and tar-
get filenames, it is a good idea to have a backup of the
source file before doing this).

LEXCONV will now ask you for the target file format. This
is the format that LEXCONV will convert your program into.
Your choices are the same as for the source file format.

LEXCONV will now ask you two more questions. You will be
asked if you wish to compress blanks. The reply can be Y
for yes or N for no. Under most circumstances you should
reply yves which will cause multiple blanks to be converted
into horizontal tab characters (09H) where possible. We
have included this option so that you can create UNNUMBERED
ASCII format files for use with word processing programs
that do not support horizontal tab characters. Note that

most files will be significantly larger if converted without
the compress blanks option.

Finally, you will be asked if you wish to perform lexical
conversion. The reply to this question is Y for yes or N
for no. If you reply yes, LEXCONV will perform additional



processing for each line of the program being converted.

This optional processing has been designed to detect certain
assembler language syntax forms that are not supported by
‘the M-ZAL assembler, but which may appear in programs written
for use with other assemblers. LEXCONV will attempt to
convert such statements to their M-ZAL equivalents. The
specific conditions handled by this option are described in
the next section of this chapter.

After the last question is answered, LEXCONV will begin
processing. It will open the source file and- read the
program contained therein, assuming it is in the format that
was specified. As the program is read into memory, blank
compression and/or lexical conversion will be performed if
requested. When the entire 'source file has been read it
will be closed and the target file will be opened. The
program will then be written out to the target file in the
format specified. If an i/o error or out of memory condition
is encountered, you will be given the option of continuing
or terminating (i/o error codes are given in decimal).

When LEXCONV has completed the requésted conversion you can
hit the ENTER key to refresh the menu and specify another -
conversion or hit the CLEAR key to return to DOS.

As you can well imagine, LEXCONV is a very versatile program.
The following sample LEXCONV session will demonstrate only
one of LEXCONV's many uses.

Suppose you have a program written for use with MACRO-80
and you wish to assemble it using the M-ZAL assembler. The
program is stored on your system disk as file "PGM5/ASM"™ .
You want to convert it for use with M-ZAL and place the new
copy on the disk in drive 1 with a filename of "PGM5A/ASM" .
Your LEXCONV session would look like this:

ENTER SOURCE FILENAME ==> PGM5/ASM:0
ENTER SOURCE FILE TYPE (l1-4) ==> 3

ENTER TARGET FILENAME ==> PGM5A/ASM:1l
ENTER TARGET FILE TYPE (1l-4) ==> 1

DO YOU WISH TO COMPRESS BLANKS WHERE POSSIBLE (Y/N) ? Y
DO YOU WISH TO PERFORM LEXICAL CONVERSION (Y/N) ? Y




3) The Lexical Conversion Option

As mentioned earlier, the lexical conversion option gives
you the ability to automatically modify certain assembler
language statements so that they will be acceptable to the
M-ZAL assembler. This chapter defines exactly what cond-
itions are handled by the converter.

- The M-ZAL assembler requires that all comment lines begin
with a semicolon in column one. Some assemblers accept
all blank lines as comments (M-ZAL will give a "NO OPCODE"
error). Some assemblers allow comment lines to begin after
column 1 with a semicolon (M-ZAL will give an "INVALID OP-
CODE" error). The lexical converter option will place a
semicolon in column one of all blank lines. It will also
place a semicolon in column one if it detects a semicolon
on a line prior to any other non-blank character.

- Some assemblers allow labels to be followed by colons.
Some assemblers require labels to be followed by colons.
The M-ZAL assembler does not accept colons on labels.
The lexical converter option will detect a colon if it

appears immediately after a valid label and will remove
it. Thus the statement

’

GETPARM: LD HL, (PARM)

will be converted into
GETPARM LD HL, (PARM)

- Some assemblers allow labels to be equated to the current
location counter by simply following them with a colon and
leaving the rest of the line blank. The lexical converter
option will detect this condition and convert it to the
equivalent M-ZAL statement. Thus the statement

XTABLE:
will be converted into
XTABLE EQU $
- An additional feature of the lexical converter option is
that it will always remove trailing blanks from every line

it processes. This helps to reduce the amount of disk
space required by any assembler program.



III. NEW FEATURES IN TXEDIT (TEXT EDITOR PROGRAM)

Two new features have been added to the TXEDIT (text editor)

program. They are the warm start option and a new command
to display free space (CLEAR ?).

1) Wwarm Start Option

2)

The text editor can now be invoked and instructed to use the
contents of the text buffer already in memory. This is very
useful when you accidently hit D (return to DOS) from the
exit menu instead of S (save file). In such a case the text
that you had been editing is still in memory and can be re-
trieved by simply typing in TXEDIT and then replying to the
ENTER FILENAME prompt with a plus sign character ("+").

Note that if the contents of memory above 5CCOH have been
disturbed, this option will not work as the text buffer will
have been destroyed. 1In this event you may experience very -

erratic operation of the text editor and will probably have
to re-boot your system.

You can use this option td return to DOS, perform another
function, and return to the text editor with your text
intact. Remember this is possible only if you do not alter
memory above 5CCOE while back in DOS. Unfortunately, the

DIR command under TRSDOS does destroy the text buffer. If
you are using a more sophisticated operating system such as
DOSPLUS, however, you can now exit from the editor to perform

a DIR and then return to the editor with your text as you
left it.

Display Free Space Command

The text editor now has a new command which displays how
much free space you have left in your text buffer. To use
this new command hit the CLEAR key while in normal edit mode
and then hit the ? key. A message will appear briefly to
indicate how many bytes are available in the text buffer.




TN

Iv. NEW FEATURES IN ASMBLR (ASSEMBLER PROGRAM)

The most significant change in M-ZAL RELEASE 2 is the addition
of conditional assembly and macro capabilities. These extensions
to M-ZAL were designed to provide powerful pre-processing
facilities for the sophisticated assembler language programmer.
The language extensions are not intended to be compatible with

other Z-80 macro assemblers as no standard language definition
exists.

1) Conditional Assembly

Conditional assembly refers to the ability to decide
dynamically, at assembly time, whether or not a section of
code is to be assembled. Conditional assembly is supported
in M-ZAL by two new pseudo-ops, IF and ENDIF.

The format of the IF statement is as follows:
IF value operand

The operand of the IF statement may be any valid expression.
When the assembler encounters the IF statement, it evaluates
the expression. If .the expression is not equal to zero then
assembly continues normally. If the expression evaluates to

zero then the assembler stops assembling statements until it
reaches the next ENDIF statement.

-~ The format of the ENDIF statement is as follows:
ENDIF

Note that the ENDIF statement has no operands. Note also
that labels are not permitted on either the IF or the ENDIF
statements as they do not generate object code.

Example: suppose you want your program to display a prompting
message while it is being developed, but eventually you want

to remove this message from the program. Write your program
as follows:

START CALL 1C9H ; CLEAR SCREEN
IF 1 ;ASSEMBLE THE NEXT
; TWO STATEMENTS:
LD HL,MSG1l
CALL 21BH ;DISPLAY MESSAGE
ENDIF
LD BL,IB ; INPUT BUFFER
CALL 40H sREAD REPLY
oo cee rest of your program
MSGl DEFM 'ENTER YOUR ANSWER'

END START



2)

Then when it is finished and you wish to deactivate the code
that displays the prompting message (without actually deleting
it so you can reinstate it if needed), make the following
change:

START CALL 1C9H ;CLEAR SCREEN
IF 0 ;DONT ASSEMBLE THE
H NEXT TWO STATEMENTS:
LD HL,MSG1
CALL 21BH ;DISPLAY MESSAGE
ENDIF
LD HL,IB s INPUT BUFFER
CALL 40H sREAD REPLY
o cee rest of your program
MSG1l DEFM 'ENTER YOUR ANSWER'
END START

The conditional assembly feature has many more uses than the
example just shown. For example, let us assume that you are
writing a very large program which is going to just barely
fit into memory. If the main body of the program ever gets
as large as 8K then you want to automatically include a.
special routine which manages your buffer space under very
tight memory constraints. This can be accomplished as follows:

START ... - ;START OF PROGRAM
een ;MAIN BODY OF PROGRAM
PGMSIZE EQU $-START ;SIZE OF MAIN BODY
IF PGMSIZE<-13 ;IF >= 8K THEN
; ' CONTINUE ASSEMBLING.
ce ; SPECIAL ROUTINE
ENDIF
END START

Nested Conditional Assembly

Note that every IF statement in a program must have a matching
ENDIF statement or an error message will be given (see new
error messages chapter). It is also possible to nest IF and
ENDIF statements. As long as the operand of each IF statement
is non-zero, assembly will continue. Once an IF statement is
encountered with a zero operand, statement assembly will stop
and will not resume until the matching ENDIF statement is
encountered, even if a more deeply nested IF statement does
have a non-zero operand. There is no limit to how deeply

IF and ENDIF statements can be nested! Examples follow.



START cee ; START OF PROGRAM
IF 0 ; STOP ASSEMBLY
IF 1 ;STILL NO ASSEMBLY
ENDIF
ENDIF
ces ;ASSEMBLY RESUMES
END START
START cee ; START OF PROGRAM
IF 1 ; ASSEMBLY CONTINUES
IF 0 ;STOP ASSEMBLY
ENDIF
R e ; ASSEMBLY RESUMES
ENDIF
END START
START cee ; START OF PROGRAM
IF 1 ;ASSEMBLY CONTINUES
IF 1 ; ASSEMBLY CONTINUES
ENDIF
ENDIF

END START



START cee

5

: B
ERbre
Eibre

END

3) IF Statement Restrictions

Because of M-ZAL's multi-pass nature,
must be placed on the use of IF statements.

0

START

10
;START OF PROGRAM

; STOP ASSEMBLY

;STILL NO ASSEMBLY

sASSEMBLY RESUMES

certain restrictions
Specifically,

all IF statement operands must be defined at the time they

are evaluated or else a terminal error will occur.

This

error will occur during the assembler's first pass so you
will only see the offending IF statement and the statement
which follows it (the listing pass is not yet being made). _

For example:

00001 START e

00002 cen
00003 IF
00004 coe
00005 cee -
00006 ENDIF
00007 coe
00008 ALPHA  EQU
00009 cee
00010 END

ALPHA

5

START

;START OF PROGRAM

sALPHA NOT YET DEFINED

;DEFINE ALPHA (TOO LATE!)

In the above example, the operand of the IF statement is not

defined when it is encountered.

Assembly will be terminated

and statements 3 and 4 will be listed to indicate where the

problem is located.

Moving statement 8, which defines the

label ALPHA, to before the IF statement will solve the problem.

Note that the $ (location counter) operand is considered
undefined when it depends upon an as yet undefined ORG
statement, thus in the following example the IF statement

is also invalid:

START * o e
ORG

IF

ALPHA EQU

ALPHA
$-28

10

$ NOT YET DEFINED

-e

DEFINES PREVIOUS ORG

-e




11

4) Introduction to Macros

Macros are most commonly used to simplify programs when
several occurrences of similar pieces of code need to be
generated. In this application, the programmer usually
writes a macro which defines a prototype (or skeleton) of

a sequence of assembler language statements. This is called
the macro definition and is usually placed at the beginning
of the entire program. Subseguently, at the various points
in the program where this sequence of instructions is
desired, the programmer places a statement which contains
the macro name as an opcode. This statement is called a
macro invocation. When the assembler encounters the macro
invocation, it replaces it with the sequence of statements
defined in the macro definition. This process is called
macro expansion. :

As a very simple example, let us assume that you are writing
a program which requires that you define, at several different
points, a byte containing the value 1 followed by a word
containing the value 3COOH. Instead of typing in the two
line sequence:

DEFB 1

DEFW 3CO00H
at every point where it is desired, you can define a macro,
named MACl , by placing the following four statements at

_ the beginning of your program:

MACl MACRO ;DEFINE MACRO
DEFB 1
DEFW 3C00H
ENDM 3 ;sEND MACRO DEFINITION

Once you have done this, you can cause the two statements
desired to appear anywhere else in the program by simply
entering a line containing the macro name, thus:

LD EL,VALUEl
RET '
VALUE1l MACl

will cause the sequence:

LD HL,VALUELl
RET

VALUE1l DEFB 1
DEFW 3CO0H

to be assembled.



5)

12

The power of macros is made much greater by a feature known Py
as symbolic substitution. This allows you to customize each —
macro invocation with variable data. The variable information

is specified as operands on the macro invocation statement.

Each operand corresponds to a symbolic parameter on the macro
definition statement. As the macro is expanded, each

occurrence of the symbolic parameter is replaced with the
corresponding operand.

Symbolic parameters in M-ZAL always begin with a guestion
mark (?). As a simple example, suppose you are writing a
program which has to increment the contents of a word in
memory at several different points. You could write the
following macro definition and place it at the beginning
of your program: ,

INCWORD MACRO ?WORD +MACRO DEFINITION
PUSH HL ;SAVE HL REG
LD HL, (?WORD) :GET VALUE OF WORD
INC HL : INCREMENT IT
LD (?WORD) ,HL :UPDATE WORD
POP HL sRESTORE HL
ENDM ) ;END MACRO DEFINITION
Now when you place the statement: s

INCWORD CHARLIE

in your program, it will'cause the following sequence to be
expanded:

PUSH HL :SAVE HL REG

LD HL, (CHARLIE) ;GET VALUE OF WORD
INC - HL : INCREMENT IT

LD (CHARLIE),HL ;UPDATE WORD

POP HL sRESTORE HL

Observe how each occurrence of the symbolic parameter ?WORD
in the macro definition is replaced with its corresponding
operand when the macro is expanded (in this case the operand
on the INCWORD macro invocation statement is CHARLIE). Note
that you have effectively defined a new opcode called INCWORD
which provides a 16 bit memory increment!

Macro Definitions

You may define as many macros as you wish in your program
but all macro definitions must appear at the beginning of
the program, before any statements that generate, or affect
the generation of object code. One excellent approach is
to place all of your macros in a seperate source file and
use a *INCL statement at the beginning of the program to
include them. A file containing a set of macros used in
this manner is referred to as a macro library.




13

The only statements that are allowed before or in between
macro definitions are comments and assembler command state-
ments. Assembler command statements are those that begin
with a * , such as *LIST ON. If a macro definition appears
after any assembler language statements (such as ORG, LD,
DEFB, EQU, CALL, EXTRN, etc.) then an "ILLEGAL MACRO DEFINI-
TION" error will occur.

A macro definition is a sequence of statements that always
begins with a MACRO statement and ends with an ENDM state-
ment. The statements that appear between the MACRO and ENDM
statements comprise the body of the macro and are called the
prototype statements.

The format of the MACRO statement is as follows:
label MACRO {symbolic parameters}

A label is always required on a MACRO statement. The label
defines the name of the macro; this is the name by which
the macro will be invoked later on. The label may be any
valid label as defined in Chapt. IV.1l of the M-ZAL SYSTEM
MANUAL (ASSEMBLER SECTION).

No conflict will occur if the same name is used later on in

the program as a label on an assembler language statement
that generates object code.

%2ero or more symbolic parameters may be specified on any
MACRO statement. If more than one symbolic parameter is
specified, they should be seperated by commas. There is
no limit to how many symbolic parameters may be specified.

Each symbolic parameter starts with a question mark ( 2?2 ).

The rest of the symbolic parameter may be any valid label
as defined in Chapt. IV.l of the M-ZAL SYSTEM MANUAL.

Examples of valid MACRO statements:

MULTIPLY MACRO ?OPERAND1, ?0PERAND2
ADD MACRO

FREDDIE MACRO ?0U,?V,7W ;FREDDIE'S MACRO

Examples of invalid MACRO statements:

BIRD MACRO ?A7A,7?B sinvalid symbolic parm. names
IX MACRO ;invalid macro name

TRILLY9 MACRO 21,22 :invalid symbolic parameters
FLUTE  MACRO 2UV?W sinvalid symbolic parameter

The MACRO statement is followed by one or more prototype
statements which will be inserted into the program when the
macro is expanded. Prototype statements can be any kind of
statement desired, they are not checked for validity or



14

executed until the macro is expanded. Thus a *LIST OFF
statement within a macro definition will not suppress the
listing of the rest of the macro but will take effect later
when the macro is invoked. (You can place *LIST OFF state-
ments before MACRO statements to suppress listing of macro
definitions if desired.)

The only exception to this rule is the *INCL statement. If

a *INCL statement is placed within a macro definition it will
be executed immediately and the INCLuded text will be added
to the macro definition. The *INCL statement will not be
executed when the macro is invoked.

Prototype statements may contain references to the symbolic
parameters that were defined on the MACRO statement. These
references will be replaced with the corresponding operand
of the invoking statement when the macro is expanded.

Symbolic parameter references may be placed anywhere on any
prototype statement. They may appear in the label, opcode,
operand, and/or comment fields of prototype statements.

They may also appear within quoted character strings on
prototype statements.

Symbolic parameters may be combined with other characters om
prototype statements by means of the concatenation operator,
which is the period character ( . ). For example, consider

the macro definition:

«

COMB MACRO ?VARTEXT
DEFM '?VARTEXT.XYZ'
ENDM
The macro invocation:
COMB ABC
will expand into:
DEFM 'ABCXYZ'
The macro invocation:
COMB 'ABC DEF '
will expand into:
DEFM 'ABC DEF XYZ'
The macro invocation:
COMB

will expand into:

DEFM 'Xyz!



15

Note that the concatenation operator ( . ) is not required
under certain conditions. Concatenation is implied whenever
a symbolic parameter is followed immediately by

a blank

- a comma ( , )

- any operator (+, =, etc.)

- a semicolon ( ; )

- a right parenthesis ( ")" )

Regardless of this fact, whenever a symbolic parameter is
followed by a period ( . ). concatenation is implied. If
you wish the macro expansion to actually contain the period
character after a symbolic parameter, you must follow the
symbolic parameter with two periods ( .. ), for example:

FRACTION MACRO ?2X
DEFM '2X..15°
ENDM

The macro invocation:
' FRACTION 10
will expand into:
DEFM '10.15"
Special Symbolic Parameters ?INDEX and ?PARM#

any macro definition may reference the special symbolic
parameters ?INDEX and ?PARM#. These parameters are defined
automatically for every macro and have special significance.

The ?INDEX symbolic parameter will be replaced when the macro
is expanded by a four character value which will range from
"0000" to "9999". This value starts at zero and is incremented
by one after each macro invocation in the program. ?INDEX
therefore provides a value which is unique for each macro
expansion. When writing macros that must generate internal
address labels, ?INDEX can be used to insure that multiple
invocations do not cause MULTIPLE DEFINED LABEL errors.

For example, consider the following macro which subtracts a
parameterized value from the A reg and then checks to see

if the result is negative. 1If it is, then A is loaded with
another parameterized value:

SUBCK MACRO ?P1,?P2

SUB ?P1
JR NC,GL?INDEX
LD A,?P2

GL?INDEX EQU $
ENDM



16

If this macro is invoked several times as follows:

SUBCK
SUBCK

10,20
50,75

*then the resulting macro expansions will appear as:

Observe how each macro ex

GL000O

GL0001

SUB
JR
LD
EQU
SUB
JR
LD
EQU

?INDEX and thus created a
instruction target.
which ?INDEX can be used.

This i

10
NC,GLO0000
A' 20

$

50
NC,GL0001
A,75

$

pansion used a different value for

que address label for the jump

s only one of the many ways in

The ?PARM# symbolic parameter will be replaced during macro
expansion with a two character value which will range from -
value will represent the number of

"00" to "99n,
operands that were spec

This

ified on the invoking statement.

The following example illastrates the operation of ?PARM#:

The statement:
will generate:
The statement:

will generate:

COUNT

MACRO
DEFB -
ENDM
COUNT
DEFB
COUNT

DEFB

20,2V, 2w
?PARM#

00
A,B
02

7) Detecting Null Macro Operands (! operator)

From the preceding exa
not necessary to provi
parameter in a macro.

parameter will be consider

mple you may have noticed that it is
de a matching operand for each symbolic

If no value is specified to correspond
to a symbolic parameter wh

én a macro is invoked, then that
ed "null" during the macro expansion.

If you turn back to page 14 you will see another example of
this at the bottom of the page (the COMB macro example).



When writing a macro it i
whether or not the operan

17

s often useful to be able to tell
d being passed to a symbolic para-

meter is null. This can be accomplished by prefixing the

symbolic parameter wi

Wwhen the macro is expanded,

parameter

operand is null,
is not null.

th the exclamation point ( ! ) operator.

this operator will cause the
to be replaced with a "0" if the corresponding
or with a "1" if the corresponding operand

This result can be used as the operand of an
IF statement to conditionally expand part of the macro body.

For example, consider a macro which is passed a string of
characters and an optional number. The object of the macro
is to assemble the string of characters into memory and also
assemble a word containing the number if it is present.

The statement:

will generate:

The statement:

will generate:

It is often desirable t
invocation statement.
placing two consectut
placing a leading or

example, a macro is define

GENMSG MACRO
DEFM
IF
DEFW
ENDIF
ENDM

GENMSG
DEFM
IF
DEFW
ENDIF
GENMSG
DEFM

IF
ENDIF

MULTI MACRO

?STRING, ?NUMBER
' 2STRING. '

| 2NUMBER
2?NUMBER

TWENTY, 20
'TWENTY'
1 *

20
HUNDRED

'HUNDRED'
0

o force a null operand on a macro
This can be easily accomplished by
jve commas in the operand list, or by
trailing comma in the list., If, for
d with the statement:

20,2V, ?W,2X

then the macro invocation statement:

will expand wi

MULTI

will be assigned to ?U, ?W,

the value of
parameters are counted

l' ,2'3

+h a null value for ?2V. values of 1, 2, and 3
and ?X respectively. Note that

2PARM$# will still be 4 since embedded null

when ?PARM# is calculated.



8)

9)

18

Similarily, the macro invocation statement:
MULTI 12,.3,4

will expand with a null value for ?U and values of 2, 3, and
4 for ?V, ?W, and ?X respectively. The value of ?PARM# will
be "04" because we have actually specified four operands, it
just happens that one of them is null. The same technique
can be applied to the last symbolic parameter by coding a
trailing comma on the macro invocation statement.

Macro Comment Statements ( . )

Often it is desirable to add comments to macro definitions
that we do not wish to see when the macro is expanded. If
a normal comment statement (one that starts with a semicolon
on column 1) is placed in a macro definition then it will
appear when the macro is expanded. In fact, any symbolic
parameters on such a comment statement will be replaced by
the appropriate operands. To create a comment line that will
not appear in macro expansions, start it in column 1 with
a period ( . ). For example, when the macro below is expanded

comment statement 3 will appear, but comment statement 2 will
not: " ‘

1 DOCU MACRO ?VALl, ?VAL2 .
2 . THIS MACRO CONTAINS INTERNAL DOCUMENTATION.
3 ; THIS IS THE DOCU MACRO EXPANSION:

4 DEFB- ?VALL

Terminating Macro Definitions (ENDM statement)

Each macro definition is terminated by an ENDM statement.
The format of an ENDM statement is as follows:

ENDM

Note that a label is not permitted on an ENDM statement.
The ENDM statement has no operands.

10) Macro Naming Conventions

As already mentioned, a macro name can be any valid label.
You can even redefine standard zZ-80 opcodes and M~-ZAL pseudo-
opcodes by creating macros using their names.

If you define a macro with the name of a Z-80 opcode or M-ZAL
pseudo-opcode then you will be unable to use that opcode in
your program. For example, if you define a macro named SET
then you will be unable to use the Z-80 SET instruction in
your program because it would cause the macro to be invoked

(you can always generate the desired Z-80 SET instruction
via DEFB statements if needed).



19

The only exceptions to the above are the new M-ZAL pseudo-
opcodes MACRO, ENDM, IF, and ENDIF. None of these opcodes
can be redefined as macro names, any attempt to do so will
result in an "INVALID MACRO NAME" error.

If two macro definitions appear with the same name in one
program, the second macro definition will be ignored, no
error message will be given. If this macro name is invoked,

the first macro definition that used the name will be used
for expansion.

All macro definitions are compressed into a special format
and stored in memory during the assembly process. The use
of macros therefore reduces the amount of memory available
for other assembler functions (symbol table, RLD, etc.).

Macro names and symbolic parameter names are not stored in
the symbol table and will not appear in the symbol table
listing/cross-reference (unless of course they are used
elsewhere in the program as regular labels).

11) Macro Invocations

As we have already seen, a macro is invoked by placing its
name on an assembler language statement as the opcode. If
( a label is used on a macro invocation statement, the label
i will be assigned the value of the current location counter.
This means that the label will reflect the address of the
first byte of code generated by the macro (unless of course
the macro is really strange and contains an ORG statement).

As many operands as are desired may be placed on a macro
invocation statement. Operands are seperated from each
other by commas and we have already seen how to generate
null operands by using extra commas in the operand list.
No error message will be given if there are more operands
on a macro invocation statement than there are symbolic
parameters on the corresponding macro definition.

Note that if no operands are desired on a macro invocation
statement then no comment field may appear. This is because
the comment would be taken as the first operand.

Any string of characters may be specified as a macro operand.
If you wish the string to contain special characters or
embedded blanks you must enclosed it in quotes ( ' ). If
you wish the operand string to contain the quote character
itself, you must specify it as two consective quotes, i.e:

COMB 'FREDDIE''S FRIEND'



12)

13)

20

Macro Expansions

As we have already explained, when a macro is invoked the
contents of the macro definition are "expanded" into the
program, with symbolic substitution taking place as needed.

When the assembler lists the program, any statements that

~are part of a macro expansion will appear with a plus sign

( + ) character immediately to the right of the line number
field. This makes it easy to identify where macros are
being used in a program.

The line number field of each statement in a macro expansion
will be identical to the line number field of the invoking
statement. When looking at a long and complex listing,
this feature makes it easy to refer back to the original
line of source code which caused a macro expansion. This
feature also insures that the symbol table cross-reference
will still be usable for locating labels created by macro
expansions. We urge our users to keep their source code
numbered seqguentially by freguent use of TXEDIT's renumber
command. If you do this, you will find that it is very
easy to locate any error in a program and go right to it
in your source code through use of TXEDIT's search commang.

If, during macro expansion, a statement is generated which

is longer than 128 characters, only the.first 128 characters
will be used. ’

If a macro expansion generates a *INCL statement, it will be
flagged as an "INVALID OPCODE" error. *INCL statements can

only be processed if they are read in directly from a disk
source file.

Controlling Macro Listing (*MACLIST statements)

You can control the listing of macro expansion statements
through use of the new assembler command statements:

*MACLIST OFF
and *MACLIST ON

These statements may appear anywhere in a program, including
within macro definitions. Their action is independent of
the action of regular *LIST OFF and *LIST ON statements.

When a *MACLIST OFF statement is encountered it causes the
assembler to stop listing any statements that are part of
macro expansions. The listing of regular statements continues

if it has not already been inhibited by a *LIST OFF state-
ment.



14)

21

A *MACLIST ON statement will negate the effect of any
previous *MACLIST OFF statements. *MACLIST statements can
not be nested, the last *MACLIST statement encountered will
determine the status of macro listing at any time.

We caution that you can do some very strange things with

listing control statements in macros. For example, consider
the following:

1 FUNNY MACRO
*LIST OFF
ENDM

o
’

2

3

4

5 *MACLIST OFF
6 FUNNY

7 ; THIS STATEMENT WILL NOT BE LISTED.

In statement 5, listing of macro expansion statements is
turned off. The next statement, number 6, will cause the
FUNNY macro to be expanded, but the expansion will not be
listed. The listing will therefore not show the *LIST OFF
statement in the expansion and there will be no apparent
reason why all statements after statement 6 are not listed.

Note that *MACLIST controls the'listing of macro expansions.
If you want to suppress the listing of macro definitionms,
use a *LIST OFF statement before the definition itself.

Pre-processor Variables (DEFL statement)

You may recall that in the M-ZAL SYSTEM MANUAL we suggested
that the DEFL statement not be used since it allows you to
dynamically change the value of a label during an assembly.
When that manual was written, M-ZAL had no pre-processing
capabilities and we felt that the ability to change the
value of a label would only get one into trouble. BHowever,
this capability is incredibly useful when combined with
the conditional assembly and macro facilities of M-ZAL
RELEASE 2. '

For example, suppose we wish to write a macro that will

generate a byte containing a value which increases by one
every time the macro is used. We cannot use the ?INDEX .
special parameter for this task because it is affected by

all macro invocations and we wish to keep track of Jjust the
invocations of our macro.

The following example illustrates the use of a DEFL variable
in accomplishing this task.



00G5
0000
0006
0000
0001
0007
0001
0002
0008
0002

15)

22

1 COUNT MACRO

2 COUNTER DEFL COUNTER+1

3 DEFB COUNTER

4 ENDM

5 ;

6 COUNTER DEFL 5 ;SET INITIAL VALUE - 1

7 COUNT

7+COUNTER DEFL COUNTER+1
06 7+ DEFB COUNTER

8 COUNT

8+COUNTER DEFL COUNTER+1
07 8+ DEFB COUNTER

9 COUNT

9+COUNTER DEFL COUNTER+1
08 9+ DEFB COUNTER

Note that the above example is given in the form of a list~-
ing as opposed to the previous examples which were given in
the form of a list of source statements. The above example
contains the macro expansion statements as they would appear
after each macro invocation, they can be identified by the
+ which immediately follows the line number field.

Nested and Recursive Macros

Macros may be nested by placing macro invocation statements
within the body of macro definitions. Operands may be passed
dynamically from one level of macro nesting to another via
symbolic parameters. Each macro invocation causes a unigue
macro expansion to take place, with a unique set of operand
values and ?PARM# and ?INDEX values. Note that the perceived

value of ?INDEX may appear to go down as well as up during
nested macro expansions.

When a macro definition includes an invocation of itself,
the macro is said to be recursive. Such macros provide the
ability to create "pre-processor loops® which cause the
same sequence of statements to be assembled many times.

As an example of a recursive macro, consider the following:

TABLE MACRO ?VALUE
DEFB ?VALUE

IF ?VALUE
TABLE ?VALUE-1
ENDIF

ENDM

When called with an operand, this macro assembles a byte
containing that value. If the value was zero, then the
macro ends. Otherwise, it invokes itself with an operand
value that is one less than before. If called with any
small positive value, this macro will assemble a segquence

of bytes starting with that value and counting down until
a byte containing zero is assembled.



0000
0000
0005
0001
0001
0004
0002
0002
0003
0003
0003
0002
N 0004
0004
0001
0005
0005
0000

For example, the statement:

TABLE

will cause the sequence of bytes
illustrated below:

assembled, as

1l:;
2 TABLE MACRO
3 DEFB
4 IF
5 " TABLE
6 ENDIF
7 ENDM
8 ;
9 TABLE
05 9+ DEFB
9+ IF
o+ TABLE
04 9+ DEFB
9+ IF
9+ TABLE
03 o+ DEFB
9+ IF
9+ TABLE
02 9+ DEFB
9+ IF
9+ TABLE
0l 9+ DEFB
9+ IF
9+ TABLE
00 9+ DEFB
9+ IF
9+ ENDIF
9+ ENDIF
9+ ENDIF
9+ ENDIF
9+ ENDIF
9+ ENDIF
10 ;

5
05

?VALUE
2VALUE
2VALUE
?VALUE-1

mmmmt.'nuunmm

oo o n
e

23

04 03 02 01 00 to be

From the above example you can see that it is a good idea

to keep *MACLIST OFF when using recursive macros.

This

will help keep your listings readable.

The next page contains another example of a recursive macro.
This macro redefines the DEFB pseudo-opcode so that it can
be used with up to 10 operands (the DEFB pseudo-opcode as
defined in M-ZAL only allows one operand to be specified).
If you place this macro in your program you will be able

to specify anywhere from 1 to 10 operands on all subsegquent
DEFB statements. Observe how the exclamation point operator
is used to detect when all specified operands have been

assembled.



0000
0001
0000
0001
0001
0001
0002
0001
0002
0003
0001
0003
0004
0001
0004
0005
0001
0005
0006
0001
0006
0007
0001
0007
0008
0001
0008
0009
0001
0009
000A
0000

00

0l

02

03

04

05

06

07

08

09

1
2
3
4
5
6
7

8

8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
8+
9

DEFB MACRO .

~e

IF

DB
DEFB
ENDIF
ENDM

DEFB
IF

DB
DEFB
IF

DB
DEFB
IF

DB
DEFB
IF

DB
DEFB
IF

DB
DEFB
IF

DB
DEFB
IF

DB
DEFB
IF

DB
DEFB
IF

DB
DEFB
IF

DB
DEFB
IF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF

?El,?E2, ?E3, ?E4,?E5,?E6,?E7, ?ES8,

{?El
?El

?E2, ?E3, ?E4, ?E5, ?E6,?E7, ?E8, ?E9,

0,1,2,3,4,5,6,7,8,9
1

0

1,2,3,4,5,6,7,8,9
1
1l
2,3,4,5,6,7,8,9,
1l
2
3,4,5,6,7,8,9,,
1l
3
4,5,6, 7:8:9¢4¢s
1
4
5:6:7:8,%¢ 010 -

1718 9""'

IBIQII"I'
Igfllllll
rerrrrrr

rrrvrerere

1
5
6
1
6
7
1
7
8
1
8
9
1
9
[ 4
0

24

?E9, ?E10

?E10



25

16) New Error Messages

Each of the assembler's error messages were described in the
M-ZAL SYSTEM MANUAL. This section describes those error
messages that are new in M~ZAL RELEASE 2. In addition,
there are now some new reasons why you might encounter

some of the old error messages, these reasons are explained
here also.

INVALID LABEL

This is an old error message. It will be produced if a
label appears on an IF, ENDIF, or ENDM statement.

INVALID OPERAND(S)

This is an old error message. It will be produced if the
operand of an IF statement is invalid or is missing. The
IF statement will be ignored and assembly will continue
normally. This will probably cause an "UNMATCHED ENDIF
STATEMENT" error to occur later in the program.

UNMATCHED ENDIF STATEMENT

This new error message will be produced if an ENDIF state-
ment is encountered when no IF statement is active. The
statement will be ignored and assembly will continue normally.

MISSING ENDIF STATEMENT

This new error message will be produced if the end of a
program is reached and an IF statement is still active.
The assembly will be terminated normally.

UNDEFINED EXPRESSION ON IF STATEMENT

This new error message will be given if an IF statement is
encountered with an undefined operand. This is a terminal
error and will cause immediate termination of the assembly.
Tt will occur during first pass, prior to the listing phase,
but the assembler will list the offending statement and the
statement that follows it to help you identify the source
of the problem. '

INVALID MACRO NAME

This new error message will be given if the label field on
a MACRO statement is missing, or contains an invalid label,
or contains the name MACRO, ENDM, IF, or ENDIF. The macro
definition will be ignored.



26 -E
INVALID MACRO DEFINITION IGNORED

This new error message is given if a MACRO statement is
encountered after object code generation has begun. Object
code generation begins as soon as a Z-80 opcode or a M-ZAL
pseudo-opcode is encountered. The only statements that can
appear before or in between macro definitions are assembler
command statements (statements that begin with a *) and
comment statements (statements that begin with a ;). This
error will cause the offending MACRO statement to be ignored.
Assembly will then continue normally.

EXTRA ENDM STATEMENT

This new error message will be given if an ENDM statement is
encountered when a macro definition is not in progress. The
statement will be ignored and assembly will continue.

INVALID PARAMETER

This new error message will be given if an invalid operand
is detected on a macro invocation statement. Processing of
any subseguent operands on this statement will be suspended
and the macro expansion will begin. The invalid operand
and any subsegquent operands will be considered null during
the macro expansion. Consider:

-~

MAC3 A,B,'CD
In the above example a macro named MAC3 1is being invoked.
The third operand of the macro invocation is invalid because
it does not contain a closing quote. This will cause the
"INVALID PARAMETER" error message to be given. Expansion
of the MAC3 macro will begin using a value of A for the
first symbolic parameter, a value of B for the second sym-

bolic parameter, and a null value for the third symbolic
parameter.

INVALID DUMMY PARAMETER

This new error message will be given if a symbolic parameter
on a MACRO statement is invalid. Parsing of the MACRO state=-
ment will be suspended at the offending parameter. Consider:

BADONE MACRO ?21IX,?0K

The above example will cause this error message to be given
because ?IX is not a valid symbolic parameter (because IX
is not a valid M-ZAL label). 2Although processing of this
macro definition will continue, parsing of the MACRO state-
ment itself does not. This means that the 20K symbolic
parameter will not be recognized as such in the macro body.



27

Note that the special symbolic parameter names ?INDEX and
?PARM# are valid and can be specified on MACRO statements.
If they are used in this fashion, however, they cannot be
used for their special purpose as they will reflect the
corresponding operand value during a macro expansion instead.

OUT OF MEMORY DURING MACRO DEFINITION

Each macro definition is compressed into a special format

and stored in memory during the assembly process. This
terminal error message will be given if your macro definitions
are so large that they £ill all available memory. The
assembly will be terminated during the first pass, prior to
the listing phase. The assembler will list the statement
that was being processed when the error occurred as well as

the statement that follows it to help you identify the loc-
ation of the error. ’

OUT OF MEMORY DURING NESTED MACRO EXPANSION

As mentioned earlier, when macros are nested each individual
macro expansion is given a unique set of values for symbolic
parameters and the special parameters ?INDEX and ?PARM#.
These unigque values for each nested level of macro expansion
are stored in a special buffer area in memory. This error
message is given if this buffer overflows. This error can
occur if macros are nested too deeply. There is no specific
limit to how deeply macros can be nested, the practical limit

depends upon how many parameters are being used and how long
~ they are.

This error will cause immediate termination of the assembly.
- It will occur during first pass, prior to the listing phase,
but the assembler will list the offending statement and the

statement that follows it to help you identify the source
of the problem.



28

V. NEW FEATURES IN LINKER

The LINKER program has been enhanced by the addition of three
new commands in M-ZAL RELEASE 2. They are the DISPLAY, ZAP,

ané SPEED commands. The SPEED command is only available on the
Model 3.

1) DISPLAY Command

The DISPLAY command gives you the ability to examine the
contents of modules that have been loaded. 1Its format is
as follows:

DISPLAY  #### {###% ({(P}}

The first operand, which is always regquired, must be specified
as a constant value using standard syntax. It specifies the
starting address of the data to be examined. The second
operand, which is optional, specifies how many bytes of data
are to be examined. If omitted, a value of 4 is used. 1If

the third operand is specified as "P" then the display will

be routed to the printer instead of to the video screen.

This -command causes the LINKER to display the requested data
in hexadecimal. In addition, the name of the module contain-
ing the requested data is listed.

For example, the command:
DISPLAY 7000H 10

will cause the LINKER to display the name of the module which
was loaded at address 7000H as well as the contents of that
module from addresses 7000H through 7009H.

The command DISPLAY 7000E 10 P  will perform the

same operation except the output will be directed to the
printer.

The command DISPLAY 7000H will perform the same

function except only the four bytes from 7000E through 7003H
will be listed.

The command verb DISPLAY can be abbreviated as DISP if
desired.

Note that this command can only display data within a single
module at a time. If you request a DISPLAY of more bytes
than exist in the module, the extra bytes will be ignored.
Furthermore, you cannot regquest a DISPLAY of an address that
has not been loaded via the LOADA or LOADR commands, such a
request will result in an "ADDRESS NOT FOUND" error.



29

2) ZAP Command

3)

4)

The ZAP command gives you the ability to modify the contents
of modules that have been loaded. Its format is as follows:

ZAP i 323 hhhhhhhh....

The first operand specifies the address to be modified and
is specified as a constant using the standard assembler
language syntax. The second operand specifies the new data
to be placed at the first operand address. The second
operand must be specified in hexadecimal, with no trailing
"g" character. One or more bytes may be specified in the
second operand. No leading zero should be used if the first
nibble of the second operand is A through F.

For example, the command:
ZAP 7000H EDBO

will cause the contents of location 7000E to be changed to
OEDH and the contents of location 7001H to be changed to OBOH.

This command can only be used to alter data at locations
that have been previously loaded via LOADA or LOADR commands.
The LINKER will indicate the name of the module containing
the data that has been altered when this command is entered.

SPEED Command

The SPEED command has been provided to allow Model 3 users
to dynamically switch between low and high speed cassette
operations while using the LINKER. It has no operands.

When the SPEED command is entered, the LINKER will call the
ROM routine that prompts the user with the "Cass?" question.
Reply with either L for low speed (500 baud) or H for high
speed (1500 baud) cassette operations. This command will
have no effect if used on a Model 1.

New LINKER Error Messages

INVALID COMMAND

This is not a new error message, but it can now be given for
a new reason. Specifically, if the second operand of a ZAP
command is not in the format of a string of hexadecimal char-
acaters, this error will be given.

ADDRESS NOT FOUND

This message will be given if the first operand of a DISPLAY
or ZAP command specifies an address that is not known to the

LINKER (i.e.: not contained within any of the presently loaded
modules).



ZAP DATA EXCEEDS EXTENT

A single ZAP command can only affect data contained within

a single extent of a module. This error is given if the
second operand of a ZAP command specifies more bytes than
exist from the starting ZAP address to the end of the extent.
In this case no data will be zapped. For example, consider:

+LOADA TEMP

+MAP
MODULE MAP
MODULE NAME ADDRESSES ENTRIES EXTRNS
TEMP 7000-7100
7200-7FFF

+ZAP 7000H 010203

ZAP MADE IN MODULE TEMP
+ZAP 7100H FF

ZAP MADE IN MODULE TEMP
+ZAP 7100H FF00 v

ZAP DATA EXCEEDS EXTENT

The last ZAP command shown above produced an error message

because it attempted to alter data outside the extent from
7000H to 7100H.



	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf



